Technical Report

Title:	Drilling and Logging of US-8
Document ID:	TR-07-19
Author:	Glen Briscoe
Revision:	0
Date:	March 10, 2009

DGR Site Characterization Document Intera Engineering Project 06-219

Intera Engineering DGR Site Characterization Document						
intera Engineering Dort one onaracterization Document						
Title:	Drilling and Logging	g of US-8				
Document ID:	TR-07-19					
Revision Number:	0	Date: March 10, 2009				
Author(s):	Glen Briscoe					
Technical Review:	Sean Sterling, Ken	Sean Sterling, Kenneth Raven, Tom Lam (OPG)				
QA Review:	John Avis					
Approved by:		Zm				
	Kenneth Raven					

Document Revision History					
Revision	Effective Date	Description of Changes			
0	March 10, 2009	Initial Release			

TABLE OF CONTENTS

1		1
2	BACKGROUND	1
3	DRILLING AND BOREHOLE DEVELOPMENT	3
	3.1 Rotary Drilling	3
	3.2 Surface Casing Installation	3
	3.3 Drilling Fluid Management	1
	3.3.1 Drilling Fluid Preparation	
	3.3.2 Tracer Preparation	
	3.3.3 Sample Collection	5
	3.3.4 Sample Analyses	
	3.4 Zones of Drilling Fluid Loss	
	3.5 Borehole Development	
	3.6 Drilling Waste Disposal	7
		-
4	LOGGING	
	4.1 Chip Sample Logging	
	4.2 Borehole Orientation Testing	7
	4.3 Borehole Geophysics	7
5	DATA QUALITY AND USE	3
6	REFERENCES	3
	LIST OF FIGURES	
Fia	ure 1 Location of US-8	2
90		-
	LIST OF TABLES	
Tab	le 1 Summary of Sample Requirements for Drilling Fluids	5

LIST OF APPENDICES

APPENDIX A	MOE Well Record
ALLENDINA	

APPENDIX B Summary Tables of Drilling Fluid Field Measurements and Laboratory Analyses for US-8

APPENDIX C Plots of Selected Drilling Fluid Analyses for US-8

APPENDIX D Record of Borehole for US-8

1 Introduction

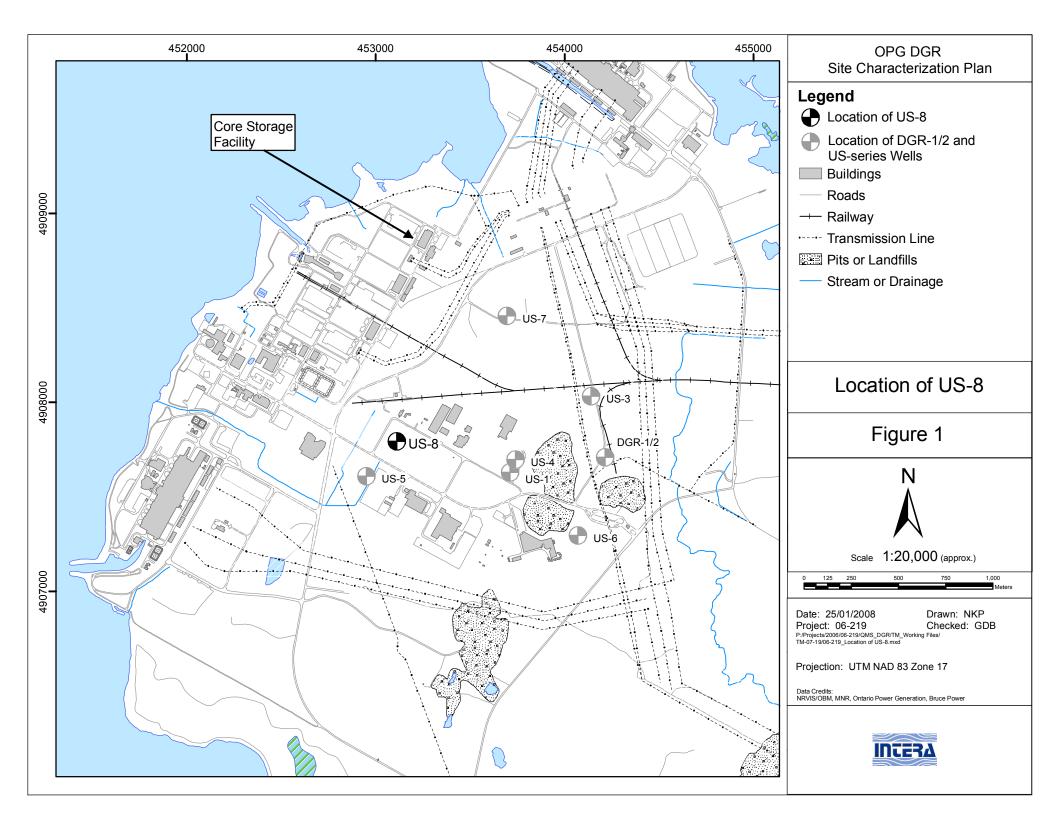
Intera Engineering Ltd. has been contracted by Ontario Power Generation (OPG) to implement the Geoscientific Site Characterization Plan (GSCP) for the Bruce site located on Lake Huron, Ontario. The purpose of this site characterization work is to assess the suitability of the Bruce site to construct a Deep Geologic Repository (DGR) to store low-level and intermediate-level radioactive waste. The GSCP is described in the Geoscientific Site Characterization Plan, OPG's Deep Geologic Repository for Low and Intermediate Level Waste Report (Intera Engineering Ltd., 2006).

This report summarizes the drilling and logging of US-8 including a description of drilling methods, drilling fluid management, surface casing installation, chip sample logging, borehole development, drilling waste disposal, borehole orientation testing, and borehole geophysical logging.

Work described in this Technical Report was completed in accordance with Test Plan TP-07-12 – Drilling and Logging of US-8 (Intera Engineering Ltd., 2007a), which was prepared following the general requirements of the DGR Project Quality Plan (Intera Engineering Ltd., 2007b).

2 Background

The DGR facility is proposed to be constructed at depths of 650 to 700 metres below ground surface (mBGS) within the argillaceous limestone of the Cobourg Formation. As part of the GSCP, a network of deep bedrock boreholes (DGR series) is being established, which primarily tests and monitors isolated borehole intervals from the Salina Formation F-Unit shale at approximately 180 mBGS down to the Precambrian bedrock at approximately 860 mBGS. In addition to this new network of deep boreholes, a network of shallow bedrock boreholes (US series) with depths of approximately 100 to 180 mBGS are being established to monitor shallow to intermediate bedrock conditions.


Six existing boreholes and monitoring wells are located on the Bruce site in the vicinity of the proposed DGR (i.e., US-1, US-3, US-4, US-5, US-6 and US-7) completed into the upper 100 m of the bedrock. Figure 1 shows the location of these boreholes and monitoring wells on the Bruce site. Four of the six boreholes (US-1, US-5, US-6 and US-7) were instrumented with Westbay MP38 multi-level groundwater monitoring systems when they were drilled in the late 1980's. Detailed sampling and groundwater monitoring was performed in these monitoring wells until about 1994 (Lee et al., 1995) and later in selected intervals of these wells.

Refurbishment and instrumentation of two existing boreholes (i.e., US-3 and US-7) was recently completed as part of Phase 1 of the GSCP. Refurbishment included removal of existing monitoring casings (US-7), pumping/development of open boreholes, and acoustic televiewer, natural gamma and video logging of open boreholes US-3 and US-7. Refurbishment was required to prepare for installation of new Westbay MP38 multi-level groundwater monitoring systems to establish future shallow bedrock monitoring wells for the Bruce DGR project. The new monitoring wells (i.e., US-3 and US-7) will provide shallow bedrock monitoring intervals in the vicinity of the proposed DGR. TP-06-03 (Intera Engineering Ltd., 2007c) describes the refurbishment of boreholes US-3 and US-7.

US-8 was constructed as an intermediate depth monitoring well to allow for long-term monitoring of formation pressures and collection of groundwater samples from packer-isolated test intervals above the Salina Formation F-Unit shale.

The Ontario Ministry of Natural Resources (MNR) confirmed that drilling of US-8 to a depth of approximately 180 mBGS at the Bruce site did not require licensing under the MNR. Therefore the Oil, Gas and Salt Resources of Ontario, Provincial Operating Standards did not apply to drilling of US-8. The US-8 drilling program was completed in accordance with the Ontario Ministry of the Environment (MOE), Regulation 903 requirements.

3 Drilling and Borehole Development

The purpose of drilling US-8 was to confirm bedrock stratigraphy and provide access for borehole geophysical testing and future multi-level sampling, monitoring and testing of the upper bedrock to the Salina Formation F-Unit shale. A borehole diameter of 96 mm (3.75 inch) was selected in an effort to ensure successful completion of these tasks. US-8 will provide monitoring intervals from approximately 5 m below top of bedrock (~10 to 15 mBGS) to the Salina F-Unit shale.

Prior to rotary drilling, a vacuum truck was used to "daylight" the borehole from ground surface to native overburden material (approx. 2.3 mBGS) to ensure no underground utilities would be encountered. US-8 was then rotary drilled from 2.3 mBGS to approximately 13.4 mBGS (4.9 metres into bedrock) with a 178 mm diameter tri-cone drill bit to facilitate surface casing installation. Following surface casing installation, the borehole was rotary drilled from 13.4 mBGS to approximately 200.4 mBGS with a 96 mm tri-cone drill bit.

The drilling of US-8 was completed in November 2007 in accordance with Ontario Regulation 903 requirements. A copy of the completed MOE Well Record for US-8 is included in Appendix A. The MOE Well Tag No. for US-8 is A063001.

3.1 Drilling Methods

All drilling activities for US-8 were completed using a truck-mounted Versa-Drill (Model: V2000NG manufactured in 2006) equipped with a hydraulic top-head power swivel. For surface casing drilling the bit rotation speed was approximately 90 to 100 revolutions per minute (RPM) with a torque of approximately ~2.0 kN-m (1500 foot pounds). The stratigraphy encountered during surface casing drilling included approximately 2.3 m of gravel fill underlain by approximately 6.2 m of unconsolidated till over the Lucas Formation dolostone.

For bedrock drilling with the 96 mm diameter tri-cone bit, the bit rotation speed averaged 100 to 120 RPM with a torque of approximately ~1.5 kN-m (1100 foot pounds). The rate of drilling advance ranged from about 3 to 12 m/hr depending on the rock formation and bit condition. The tri-cone drill bits were replaced as they became worn from drilling.

- Bit #1 drilled from 13.4 to 65.1 mBGS
- Bit #2 drilled from 65.1 to 109.0 mBGS
- Bit #3 drilled from 109.0 to 163.7 mBGS
- Bit #4 drilled from 163.7 to 200.4 mBGS

3.2 Surface Casing Installation

Following completion of the 178 mm diameter borehole to 13.4 mBGS, a 114 mm inside diameter steel surface casing was installed in the following manner:

- The surface casing was extended from the bottom of the borehole (13.4 mBGS) to approximately 0.3 m above ground surface.
- Centralizers were installed on the bottom 1.5 m casing interval to ensure the casing was centred in the borehole. Two 6.1 m casing intervals were welded onto the 1.5 m interval for a total of 13.7 m of steel casing.

- The casing was sealed in place using Type 10 St. Mary's Portland Cement. The cementitious grout was mixed at surface and injected using a tremie pipe down to the bottom of the borehole such that the casing annulus was sealed from the bottom of the borehole to ground surface.
- Three grout samples were collected at the beginning, middle and end of grouting. The samples were inspected for consistency and allowed to cure for 24 hours. All three samples passed final inspection.
- The grout in the borehole was allowed to cure for five days before commencing bedrock drilling below the bottom of casing.
- Following borehole drilling and development, the borehole was completed by extending the surface casing to approximately 1 m above ground surface.

3.3 Drilling Fluid Management

All drilling fluids were prepared using treated Lake Huron water which was obtained from Building B-19 (Spent Solvent Treatment Facility). Water was obtained from a service outlet on the southeast side of the building that is normally used for filling water tankers. Treated Lake Huron water was trucked from Building B-19 by Davidson Drilling and pumped into a 5.5 m³ capacity drilling fluid tank at the US-8 drill site.

The 178 mm diameter borehole drilled from ground surface to 13.4 mBGS for surface casing installation was drilled using untraced Lake Huron water with no drilling fluid additives. All borehole drilling fluids and cuttings were diverted from the borehole into storage tanks such that the cuttings could be settled out and the drilling fluid re-used for drilling operations. No significant fluid loss or gain was noted during the surface casing drilling.

3.3.1 Drilling Fluid Preparation

Prior to drilling the 96 mm diameter borehole from 13.4 mBGS to depth, drilling fluids were prepared by adding Baroid QUIK-GEL[®], a bentonite drilling product, to the traced potable water. The bentonite was added to the water to create a high viscosity drilling mud to aid in drill cuttings removal from the borehole. Sodium Fluorescein (NaFI) was used to trace the drilling fluids for US-8 to the same target concentrations used for drilling DGR-1 and DGR-2. Intera retained responsibility for maintenance of the NaFI target tracer concentration of 1 mg/L and Davidson Drilling was responsible for mixing and maintaining the drilling fluids. Once rotary drilling started, the physical properties of the drilling fluids were monitored for fluid density and viscosity by Davidson Drilling.

3.3.2 Tracer Preparation

NaFI stock solutions were prepared at concentrations of 10 g/L using treated Lake Huron water. NaFI stock solutions were used for dosing the drilling fluid tank to achieve the target drilling fluid concentration of 1 mg/L and for preparing NaFI drilling water standards.

NaFI drilling water standards were prepared at concentrations bracketing the target drilling fluid concentration of 1 mg/L. Standards were prepared from NaFI stock solutions at concentrations of 10, 100, 500, 1000 and 1500 μ g/L. The standards were then diluted 1:10 prior to calibration of the fluorometer.

These standards were identified as NaFI-mmmm.m, where NaFI is sodium fluorescein and mmmm.m is the concentration in μ g/L. In addition to a name, drilling water standards had the following information on the label:

- 1. date of preparation;
- 2. name of the person who prepared it;

- 3. scientific notebook name and page number showing the record of the standard preparation; and
- 4. requirement to store standard in a dark place out of direct light.

NaFI standards were stored in the field lab refrigerator, at approximately 4°C.

Records of the above tracer preparation were retained in scientific notebooks (ID: SN-07-12-Drilling & Logging of US-8).

3.3.3 Sample Collection

Samples of the prepared drilling fluid were collected for NaFI analyses two times per day during active bedrock drilling. Drilling fluid tracer samples collected from the drill-water tank (DWT) were identified by DWT-XXXX-YY where XXXX is the borehole identifier and YY is the index number of the sample. All drilling fluid samples required the time and date of sampling to be recorded on the sample label, as well as the name of the person who collected the sample.

Eight representative samples of Lake Huron water used as drilling fluid were also collected and submitted for tritium analysis. The Lake Huron water samples were collected from the water truck discharge line prior to mixing with drilling fluid additives. Two representative samples of Lake Huron water (DWT-US8-02 and DWT-US8-11) were also submitted for analyses of major and trace metals, major anions and environmental isotopes (¹⁸O and ²H) during the drilling program.

Samples collected for NaFI analyses were collected as well-mixed grab samples in 250 millilitre (mL) high density polyethylene (HDPE) containers that were protected from heat and light and stored in refrigerators. The samples were allowed to settle for a reasonable period of time (i.e. up to 3 or 4 hours) to remove suspended fine particulate. Approximately 20 mL of sample was filtered with a 0.45µm filter using a syringe. A 2 mL sample of the filtered drilling fluid was collected with a 1-5 mL pipettor (Measurement and Test Equipment [MTE] ID: PIP-01) and was mixed with 18 mL of deionized water, which was collected with a 2-10 mL pipettor (MTE ID: PIP-02), to generate a 20 mL water sample for analysis of NaFI content.

Samples of drilling water were collected for specific analytical tests in high density polyethylene (HDPE) bottles. Samples were kept in the refrigerators in the Core Storage Facility, at approximately 4°C until analysis or shipment to laboratories. Archived water samples were also stored in the Core Storage Facility refrigerators. Table 1 summarizes the sample container and preservation requirements for the analysis of selected drilling fluid parameters.

Analytes	Bottle Type	Volume (mL)	Preservation	Headspace	
NaFl	HDPE	250	None required	No	
Major and Trace Metals	HDPE	60	Filter to 0.45 μm Acidify to pH <2 with Nitric Acid (~5 drops of 50% HNO ₃); 4°C	No	
Major Anions	HDPE	60	4°C		
¹⁸ O and ² H in water	HDPE	30	None required	No	
Tritium	HDPE	250	None required	No	
Archive	HDPE	1000	4°C	No	

Table 1	Summary of Sample Requirements for Drilling Fluids
	ounning of ounpic requirements for Drining Fulus

3.3.4 Sample Analyses

NaFI concentrations were measured in the field laboratory using a Turner Designs Trilogy Model 7200-000 fluorometer (MTE ID: FL-01). The fluorometer was calibrated once per batch of NaFI tracer stock solution mixed using prepared NaFI standards. The NaFI standards were prepared using treated Lake Huron water. The calibration was checked using manufacturer-prepared solid state standards each time the fluorometer was used to measure drilling fluid tracer concentrations. Both standards and collected samples were diluted 1:10 to optimize tracer measurement within the fluorometer linearity range.

NaFI tracer concentrations were measured with a linearity of $0.99R^2$ and a lower detection limit that was not more the 1% of drilling fluid tracer concentrations. Both of these tolerance levels were met by the Turner fluorometer assuming a drilling fluid source concentration of 1 mg/L and 10:1 dilution on prepared drilling fluid samples and standards (note maximum linear range for NaFI detection with the Trilogy Model 7200-000 fluorometer is about 150 µg/L).

Records of the above NaFI analyses and fluorometer calibrations were retained in scientific notebook (ID: SN-07-12-Drilling & Logging of US-8). Results of the NaFI analyses are presented in Table B.1 in Appendix B.

Tritium analyses were completed by the Environmental Isotope Laboratory, University of Waterloo in Waterloo, Ontario. Major and Trace Metals and Major Anions analyses were completed by Activation Laboratories Ltd. in Ancaster, Ontario. ¹⁸O and ²H analyses were completed by the University of Ottawa in Ottawa, Ontario. Results of the laboratory analyses are presented in Table B.2 in Appendix B. Plots of NaFI and tritium versus depth are presented in Figure C.1 in Appendix C.

3.4 Zones of Drilling Fluid Loss

Zones of drilling fluid loss were observed and noted during the drilling of US-8. Zones of increased drilling fluid loss were documented in the scientific notebook (ID: SN-07-12-Drilling & Logging of US-8) for future reference and consideration when designing the Westbay MP38 multi-level groundwater monitoring system. Zones of drilling fluid loss were noted in the following formations at the following approximate depths below ground surface:

- Lucas Formation 28 mBGS;
- Bois Blanc Formation 97 to 109 mBGS;
- Bois Blanc Formation 125 to 136 mBGS; and
- Bass Islands Formation 155 to 160 mBGS.

Slow steady fluid loss was reported for the majority of the rotary drilling of US-8. Drilling fluid losses in US-8 ranged from about 0.5 to 1.0 m³/hr.

3.5 Borehole Development

Following completion of drilling, the borehole was developed to remove drilling fluid from the borehole and the formation. The borehole was developed by pumping approximately two borehole volumes of traced Lake Huron water into the bottom of the borehole to displace the drilling fluid. The drilling fluid was collected at surface and disposed off site. Once the drilling fluid was displaced, the borehole was further developed by air lifting the traced Lake Huron water and formation water from the borehole with the drill rig. The traced Lake Huron water and formation water for off site disposal. In total over 30 borehole volumes were purged from the well during development.

Drilling fluid tracer (NaFI) concentrations and turbidity were monitored during development to determine when sufficient development had been completed. The duration of borehole development was determined based on the removal of cuttings (judged by the visible clarity of development water), concentration of tracer in the pumped fluids and cumulative volume of water pumped from the borehole. Results of the NaFI analyses are presented in Table B.3 in Appendix B.

At the end of borehole development a Grundfos pump was used to collect one final sample (OHGW-US8-01) for lab analyses of major and trace metals, major anions, tritium and environmental isotopes (¹⁸O and ²H). Results of the laboratory analyses for OHGW-US8-01 are included in Table B.2 in Appendix B.

3.6 Drilling Waste Disposal

Drilling fluid and cuttings generated during the field program were captured and contained in tanks on site. Borehole cuttings and drilling fluids produced during US-8 drilling operations were considered to be inert fill and were transported offsite using a vacuum truck and disposed of as inert fill. Water produced during borehole development was also disposed off site.

4 Logging

Logging of US-8 included chip sample logging, borehole orientation testing, and borehole geophysical logging.

4.1 Chip Sample Logging

Drill cutting samples were collected every 3 metres during bedrock drilling and placed in clear re-sealable sample bags for further inspection and logging. Each sample bag was clearly labelled with permanent marker stating the borehole name (US-8), date, time, depth of sample and sample collector.

All samples were logged for general bedrock stratigraphy and organized in a box for storage and future reference. Bedrock stratigraphy followed the nomenclature of Armstrong and Carter (2006). Chip sample logging was recorded in scientific notebook (ID: SN-07-12-Drilling & Logging of US-8). A summary of the chip samples collected and sample descriptions are presented in the borehole log in Appendix D.

4.2 Borehole Orientation Testing

A borehole orientation test was to be completed during the geophysical logging of the hole with an acoustic televiewer. Due to the borehole conditions encountered during logging, the acoustic televiewer tool could not be run to the bottom of the hole and therefore borehole orientation testing was not completed on US-8. Borehole US-8 is assumed to be essentially vertical.

4.3 Borehole Geophysics

After drilling and borehole development were completed, a limited suite of borehole geophysical logs were to be conducted prior to installation of a Westbay MP38 multilevel monitoring system. The suite of borehole geophysical logs that were to be completed in US-8 included acoustic televiewer (ATV), natural gamma and borehole video.

The geophysical logging of US-8 was completed by Lotowater Technical Services Inc. of Paris, Ontario. A borehole video log was completed by Lotowater on November 28 and 29 2007 using a Laval R2000 DUAL CAM camera. The video log was referenced to ground surface, accounting for the 0.99 metre stick up well casing. The video log was reviewed by Intera personnel to document borehole conditions prior to designing the Westbay MP38 multi-level groundwater monitoring system. Borehole features such as smooth competent zones,

fractures, highly broken rock, breakout zones and voids were noted. Video log review notes are included as Table D.1 in Appendix D. The video log is available on DVD upon request.

A natural gamma log was also completed on November 29, 2007 using a Mount Sopris Instruments Co. Inc. 2 PGA Gamma logger. The natural gamma log data are presented on the borehole log found in Appendix D. Borehole geophysical logging followed the general procedures as described for video and natural gamma logging in TP-07-05 (Intera Engineering Ltd., 2007d).

The ATV log was not completed for US-8 due to adverse borehole conditions encountered during logging. During initial logging, the ATV tool was temporarily lodged in the borehole at depths of approximately 50 and 68 m bgs. The video log showed zones of borehole enlargement, and loose rock at those depths and deeper. Consequently, the ATV log was not completed for fear that the ATV tool would become lodged in the borehole.

5 Data Quality and Use

Data on bedrock formation nomenclature and occurrence in this Technical Report are based on rock chip sample logging and expert geological review of conditions observed in borehole DGR-1 at the Bruce site. Many contacts between individual bedrock formations in DGR-1 and US-8 are gradational rather than sharp and the selected contacts reflect the interpretation of Intera geologists based on the US-8 borehole chip and geophysical logs and the results of detailed core and geophysical logging from DGR-1.

The data presented in this Technical Report are suitable for providing the framework for development of Phase 1 geological, hydrogeological and geomechanical descriptive site models of the Bruce DGR site. The data will also be used to design the Westbay MP38 multilevel monitoring system for US-8.

6 References

Armstrong, D. K. and T. R. Carter, 2006. An Updated Guide to the Subsurface Paleozoic Stratigraphy of Southern Ontario, Ontario Geological Survey, Open File Report 6191, 214 p.

Intera Engineering Ltd., 2007a. Test Plan for Drilling and Logging of US-8, TP-07-12, Revision 0, November 9, Ottawa.

Intera Engineering Ltd., 2007b. Project Quality Plan, DGR Site Characterization, Revision 3, January 17, Ottawa.

Intera Engineering Ltd., 2007c. Test Plan for Refurbishment of Boreholes US-3 and US-7, TP-06-03, Revision 2, November 8, Ottawa.

Intera Engineering Ltd., 2007d. Test Plan for DGR-1and DGR-2 Borehole Geophysical Logging, TP-07-05, Revision 1, April 27, Ottawa.

Intera Engineering Ltd., 2006. Geoscientific Site Characterization Plan, OPG's Deep Geologic Repository for Low and Intermediate Level Waste, Report INTERA 05-220-1, OPG 00216-REP-03902-00002-R00, April, Ottawa.

Lee, D., T.Kotzer and K. King, 1995. Preliminary Assessment of Low- and Intermediate-Level Waste Disposal in the Michigan Basin: Isotopic and Geochemical Measurements. AECL Chalk River Laboratories, Chalk River, Ontario, Report No. COG-95-248-I.

APPENDIX A

MOE Well Record

Ø	Ontario	Ministr the Env
$\mathbf{\nabla}$		

ry of vironment

Well Tag No. (Place Sticker and/or Print Below)

Well Record

Page	of

	Environment	A 063	3001	Regulation 903 Ontario Water Reso Page0					
Well Owner's Information	· · · · · · · · · · · · · · · · · · ·				-				
First Name	Last Name		E-mail Addre	ess		2		Well Co by Well	nstructed Owner
Mailing Address (Street Number/Nam Interacting, 1 Ray	ne, RR)	Municipality		Province	Postal Code		Telephone I	No. (inc.	area code)
" Interacking incering, 1 Kay Part A Construction and/or Ma			a	ON	KIRII	AZ	6132	322	2525
Address of Well Location (Street Nun		Townsh			Lot		Concession		
Bruce Nuclear Site			nice Nilce		25	Deside	L		Oada
County/District/Municipality BRUCE			wn/Village VIRTON			Provin Ont:		Postal	
UTM Coordinates Zone Easting	Northing	GPS Unit	Make Model	Mode of C	تيهو	Undiffe	rentiated		eraged
NAD 8 3 1 7 7 5 3 1 Overburden and Bedrock Materia	6 8 4 9 0 7 7		1 OTREX Ver	nTurc Differen	tiated, specify_				
General Colour Most Common I		Other Materials		General De	escription	· · · · · · · · · · · · · · · · · · ·		Depth From	(Metres)
Brown Fill	Clay	stones						0	8'
Gray Clay	Stor	nes	Ha	rd				8'	28
Brown Limeston	16-							28'	44'
brown Limestone	- with grey 1	ayers						44'	640'
Grey/Blue Shale		,						640'	656
	e/Abandonment Sea				Results of We			1 5	
	Type of Sealant Used (Material and Type)		Volume Placed (Cubic Metres)	Check box if after test water was:		Time	aw Down Water Leve	1 Time	ecovery Water Lev
0 441 Comen	t			Clear and sand f		(Min) Static	(Metres)	(Min) Static	(Metres)
	•			state If pumping discontinue	ed, give reason:	Level		Level	
						<u> </u>	·	1	
				Pumping test method	1	2		2	
Method of Construction		Water Use	· · · · · · · · · · · · · · · · · · ·	Pump intake set at (/	Metres)	3		3	
Cable Tool Diamond			Not used	Pumping rate (Litres/	min	4		4	
Rotary (Conventional) Image: Jetting Rotary (Reverse) Image: Driving	Domestic	Municipal	Monitoring			5		5	
Rotary (Air) Digging Air percussion Boring	☐ Irrigation ☐ Industrial	Cooling & Air C	conditioning	Duration of pumping hrs + r	nin	10		10	
Other, <i>specify</i>	Other, specify			Final water level end c		15		15	
Water Supply Dewaterin	Status of Well g Well	X Observation and	/or Monitoring Hole	(Metres)		20		20	
Replacement Well Abandone	ed, Insufficient Supply ed, Poor Water Quality	Alteration (Cons	struction)	Recommended pump		25		25	
	ed, Poor Water Quality	Other, specify		Recommended pump	o depth	30		30	
	Location of Well			Recommended pump (Litres/min)	rate	40		40	
ease provide a map below showing: all property boundaries, and measurement an arrow indicating the North direction	ents sufficient to locate t	he well in relation to	fixed points,			50		50	
In arrow indicating the North direction letailed drawings can be provided as at idiated pictures of inside of well can also		in legal size (8.5" by	14")	If flowing give rate (Litres/min)		60	· ·	60	
idigital pictures of inside of well can als		RVICE RD.			Water	Detail	5		
N . BA	Il Concerned	1 1		Water found at Dep	th Kind o	f Wate	r .		
350,	Corr			8 1 -Mettes [Water found at Dep	th Kind o	f Wate	r		Minera
01				HID Metres	Gas Gas	sh 🗌	Salty 🔲 S	ulphur	Minera
V				Water found at Dep	th Kind o	f Wate			
	MAIN RD.			Casing Used	Gas Gas		Casing ar		
			··	Galvanized	Galvanized	Dia	meter of the	Hole (Cer	
	1]Steel]Fibreglass	Dep	4-incl oth of the Hol	e (<u>Metre</u> s	VF4
	vner's information D	ate the Well Record a	and Package	Plastic	Plastic		656		
yyy/mm/dd) package delivere	ed? De	elivered to Well Own	ier (yyyy/mm/dd)]Concrete	Wa	Il Thickness (Metres)	
Well Contractor	and Well Technicia			No Casing and	Screen Used	Insi	de Diameter 3 ³ /4 1	of the Ca	sing (Metre
NIDSCN (ELL DRILL	NG LIMITE.		ctor's Licence No.	Disinfected?		Der	bth of the Cas	sing (Met	195) F.F.
siness Address (Street No./Name, nu	umber, RR)	Municipality		Yes No			44	-	
7 North St. W. Dvince Postal Code	Business E-mail Add	WING HA	M	Audit No.	Ministry		nly Intractor No.		
ON NEELWH	into Gelavids.	endrilling.c.	c m	Z /54	43				
s.Telephone No. (inc. area code) Name	of Well Technician (La	ast Name, First Nar	me)	Date Received (yyyy/m	m/dd)	Date of	Inspection (y	yyy/mm/c	ld)
	of Technician	Date Subm	nitted (yyyy/mm/dd)	Remarks	~				
2 10 10 13	. herdson	N 20	07/12/06						
506E (11/2006)							© Queen's	Drinter for	Ontario

APPENDIX B

Summary Tables of Drilling Fluid Field Measurements and Laboratory Analyses for US-8

Table B.1 – Summary of Sodium Fluoresein Measurements for US-8 Drilling

Table B. 2 – Summary of Laboratory Analysis for US-8 Fluid Samples

Table B.3 – Summary of Sodium Fluorescein Measurements for US-8 Development

Sample ID	Date Collected	Time Collected	Depth (mBGS)	Fluorometer Reading (μg/L)	NaFl Concentration (µg/L)
DWT-US-8-01	14-Nov-07	14:25	17.34	114.59	1145.9
DWT-US-8-02	15-Nov-07	8:10	35.64		
DWT-US-8-03	15-Nov-07	9:00	38.69	129.44	1294.4
DWT-US-8-04	15-Nov-07	15:50	60.04	107.53	1075.3
DWT-US-8-05	16-Nov-07	9:20	65.09		
DWT-US-8-06	16-Nov-07	9:35	65.09	103.70	1037.0
DWT-US-8-07	16-Nov-07	14:25	78.34	110.63	1106.3
DWT-US-8-08	17-Nov-07	10:15	90.54	78.03	780.3
DWT-US-8-09	17-Nov-07	10:55	90.54		
DWT-US-8-10	17-Nov-07	14:15	102.74	83.69	836.9
DWT-US-8-11	20-Nov-07	14:11	108.84		
DWT-US-8-12	20-Nov-07	14:30	111.89	152.06	836.3*
DWT-US-8-13	20-Nov-07	16:13	117.99	106.40	1064.0
DWT-US-8-14	21-Nov-07	8:37	130.19		
DWT-US-8-15	21-Nov-07	8:35	130.19	121.95	1219.5
DWT-US-8-16	21-Nov-07	12:14	148.49	99.60	996.0
DWT-US-8-17	21-Nov-07	15:17	160.69	117.06	1170.6
DWT-US-8-18	22-Nov-07	10:59	163.74		
DWT-US-8-19	22-Nov-07	11:10	163.74	132.67	1326.7
DWT-US-8-20	22-Nov-07	15:15	178.99	122.42	1224.2
DWT-US-8-21	23-Nov-07	8:55	188.14		
DWT-US-8-22	23-Nov-07	8:48	188.14	127.01	1270.1
DWT-US-8-23	23-Nov-07	12:16	200.39	130.66	1306.6

Table B.1 - Summary of Sodium Fluorescein Measurements for US-8 Drilling

Notes:

NaFl concentration = 10 times fluorometer reading due to dilution factor

* = exception, dilution factor of 5.5

mBGS = metres below ground surface.

µg/L = micrograms per litre

-- = Parameter not analyzed.

Table B.2 - Summary of Laboratory Analyses for US-8 Fluid Samples

				-
		8-02	8-11	OHGW-US8-01
		-Sí	-Sl	P -
		ר ב-ר	ר ב-	N N
MDI	Unite	M	M	Н
NIDL	Units			Open Hole
				25-Nov-07
		101107 07	201101 01	201101 01
0.1	nH unite			
	•		176	 511
	mg/L CaCO.	152	170	511
		1005 1	1005.06	1003.75
INV	9/L	1003.1	1003.90	1003.75
0.7	ma/l	>20	>20	>20
				>20 <0.01
				<0.01 >20
				0.0164
				2.19
				8.5
	-			>35
				>0.2
0.00001	iiig/E	0.100	0.121	10.2
0.03	ma/l	<0.03	0 11	<0.06
				17.9
				1.88
		0.29	0.31	<0.02
				0.05
				< 0.04
		16.2	16.0	97.9
	0			
0.1	TU	102.2	158.5	431.4
0.1				-74.50
				-10.68
	0100 (700)	-0.04	-0.03	- 10.00
2		5.0	50	2
				2.5
				2.5 4.27
				>400
				<0.1
				<0.1
				0.06
				0.026
				<0.5
				0.69
				0.4
				0.002
	MDL 0.1 NV 2 NV 0.7 0.01 0.001 0.001 0.001 0.003 0.2 0.005 0.00004 0.03 0.2 0.005 0.0001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.001 0.03 0.01 0.001 0.03 0.01 0.001 0.03 0.01 0.001 0.03 0.01 0.001 0.03 0.01 0.03 0.01 0.01 0.001 0.03 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.1 0.5 0.20 0.001 0.5 0.20 0.001 0.5 0.20 0.001 0.5 0.20 0.001 0.5 0.2 0.001 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.1 pH units mg/L mg/L CaCO ₃ NV g/L 0.7 mg/L g/L 0.01 mg/L g/L 0.01 mg/L g/L 0.01 mg/L g/L 0.01 mg/L g/L 0.001 mg/L g/L 0.03 mg/L g/L 0.03 mg/L g/L 0.03 mg/L g/L 0.01 mg/L g/L 0.03 mg/L g/L 0.01 µg/L 0.1 µg/L 0.1 µg/L 0.3 µg/L 0.1 µg/L 0.3 µg/L 0.3 µg/L 0.5 µg/L 0.05 µg/L	35.64 15-Nov-070.1pH units mg/L 152 152 $mg/L CaCO_3$ $$ NV0.7mg/L g/L 0.7mg/L 0.01 0.001 0.001 0.001 0.001 0.03 0.03 0.03 0.03 0.0004 0.03mg/L 0.153 0.03mg/L 0.153 0.03mg/L 0.153 0.03mg/L 0.153 0.03mg/L 0.153 0.03mg/L 0.153 0.03mg/L 0.153 0.03mg/L 0.153 0.04mg/L 0.153 0.05mg/L 0.066 0.01 0.01 mg/L 0.061 0.03mg/L 0.153 0.01 0.02 0.01 0.02 0.11TU 0.29 0.11 0.1622 0.11TU 0.1622 2 0.01 $0.180 (\%)$ -55.09 -55.09 -6.84 2 0.01 0.11 0.16 0.16 0.03 0.11 $0.16220.11TU0.16220.11TU0.16220.11\mu g/L0.16220.11\mu g/L0.16220.11\mu g/L0.16220.11\mu g/L0.16220.11\mu g/L0.16220.11\mu g/L0.16220.11\mu g/L0.16220.11\mu g/L0.16220.11\mu g/L0.06120.021\mu g/L0.06120.031\mu g/L0.06120.011\mu g/L0.0270.22\mu g/L0.0520.033\mu g/L$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table B.2 - Summary of Laboratory Analyses for US-8 Fluid Samples

Parameter Depth (mBGS)> Date Sampled>	MDL	Units	20-8-SN-LMO 35.64 15-Nov-07	11-8-SN-1MD 108.84 20-Nov-07	ю-8SЛ-МЭНО Open Hole 25-Nov-07
Gallium	0.01	µg/L	<0.01	<0.01	0.02
Lead	0.01	µg/L	0.52	0.02	0.01
Lithium	1	µg/L	1.0	<1	12
Mercury	0.2	µg/L	<0.2	<0.2	<0.2
Molybdenum	0.1	µg/L	0.5	0.5	11.1
Nickel	0.3	µg/L	33.5	1.4	16.9
Rubidium	0.005	µg/L	0.386	1.69	2.64
Selenium	0.2	µg/L	<0.2	<0.2	19.4
Thallium	0.001	ug/L	0.001	0.003	0.033
Titanium	0.1	μg/L	3.1	3.4	3.8
Tungsten	0.02	µg/L	<0.02	<0.02	0.1
Uranium	0.001	µg/L	0.287	0.293	15.3
Vanadium	0.1	µg/L	<0.1	<0.1	2.5
Zinc	0.5	µg/L	77.3	73.2	7.6

Notes:

mBGS = metres below ground surface.

MDL = Method Detection Limit.

-- = Parameter not analyzed.

<0.01 = Not detected above MDL.

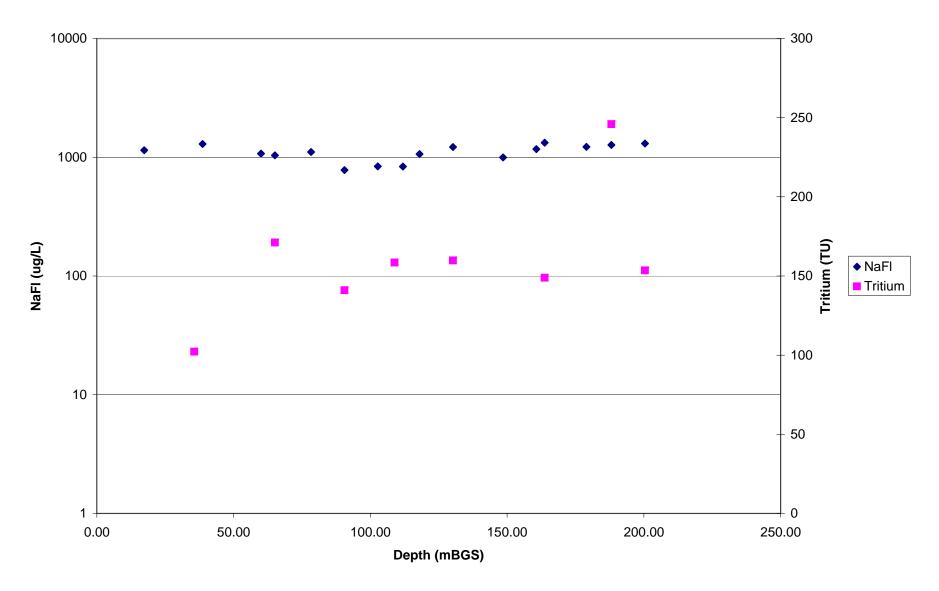
Table B.3 - Summary of Sodium Fluorescein Measurements for US-8 Development

Sample ID	Date Collected	Time Collected	Depth (mBGS)	Fluorometer Reading (ug/L)	NaFl (ug/L)
DWT-US-8-24	24-Nov-07	9:35	200.39		
DWT-US-8-25	24-Nov-07	9:40	BH Development	169.29	1692.9
DWT-US-8-26	24-Nov-07	10:40	BH Development	21.19	211.9
DWT-US-8-27	24-Nov-07	11:40	BH Development	7.92	79.2
DWT-US-8-28	24-Nov-07	12:55	BH Development	5.35	53.5
DWT-US-8-29	24-Nov-07	13:45	BH Development	3.29	32.9
DWT-US-8-30	24-Nov-07	14:59	BH Development	7.94	79.4
DWT-US-8-31	24-Nov-07	15:30	BH Development	10.67	106.7
DWT-US-8-32	24-Nov-07	16:00	BH Development	5.12	51.2
DWT-US-8-33	25-Nov-07	9:18	grundfos purge	17.54	175.4
DWT-US-8-34	25-Nov-07	10:35	grundfos purge	18.24	182.4
OHGW-US8-01	25-Nov-07	11:40	open hole	11.32	113.2

Notes:

mBGS = metres below ground surface.

 μ g/L = micrograms per litre


-- = Parameter not analyzed.

APPENDIX C

Plots of Selected Drilling Fluid Analyses for US-8

APPENDIX D

Record of Borehole for US-8

Table D.1 – US-8 Video Log Review Notes

RECORD OF BOREHOLE US-8

Pro Clie Site	ent: Ont Location: Tive ordinates: NA	-8 219.25.35 ario Power Generation erton, Ontario, Canada D83 UTM Zone 17N, rthing = 907793.4m, Easting =45311	MOE Well Lic Date Complet Supervisor: Reference Su Drill Rig: 0.7m	ed:	Sean tion: 187.2	001 DV-2007 Sterling mASL Rotary Drill, Da	avidson
	Stratigraphic Legend Contact Legend Fill Dolostone Cherty Dolostone Borehole Boundary Till Argillaceous Dolostone Dolomitic Shale Formation Contact						
Depth (mBGS)	Strat Veritical Exageratio	igraphic Description n 1m: 100m	Rotary Drilling Chip Sample ID#	Stratigraphy		MMA PS 200	Elev. (mASL)
0 2	Fill - Gravel fill mater	ial 2.29			Mumun		- 186 - -
4	<u>Till</u> - Grey clay				Mayner Pro		
6					Aran March		- - 182 - -
8		8.53			hardon		- 180 - -
10	Lucas Form Dolostone - Grey/brown dol		US-8-009.60		MWW WWW		- 178 - -
12	Dolostone	estone/dolostone, slight	US-8-012.04		home		- 176 - - -
14					mar March		174 - - -

				172 -
- 16	Dolostone - Grey/brown dolostone, 3-5 mm size chips	US-8-016.41		-
- - - 18	Dolostone - Grey/brown dolostone, 3-5 mm size chips	US-8-017.34		- 170 - -
-				
- 20	Dolostone - Grey/brown dolostone, 3-5 mm size chips	US-8-020.39		- - 166 -
- 22	Dolostone - Brown/grey fine-grained dolostone, 3-5 mm			
- 24	size chips	US-8-023.44		164 -
- 26	Dolostone - Brown/grey fine-grained dolostone, 3-5 mm		-/-/-/********************************	- 162 - -
- - - 28	size chips	US-8-026.49		- 160 - -
- 30	Dolostone - Brown/grey fine-grained dolostone, slightly larger than 3-5 mm size chips	US-8-029.54		- - 158 - - -
- 32	Dolostone - Brown/grey dolostone, 3-5 mm size chips	US-8-032.59		- 156 - - - - 154 -
- 34	Dolostone			
- 36	- Brown/grey dolostone, 3-5 mm size chips	US-8-035.64		152 -
- 38	Dolostone - Brown fine-grained dolostone			150 - - -
- 40		US-8-038.69		- 148 - -
-				146
		Page 2		

			/			_
- - 42 -	Dolostone - Brown/grey fine-grained dolostone	US-8-041.74		mm		-
- - 44 -	Dolostone - Brown/grey fine-grained dolostone	US-8-044.79		Mr.M. V	144	-
- 46 - - - 48	Dolostone - Brown/grey fine-grained dolostone	US-8-047.84		handrown	140	-
- - 50 -	Dolostone - Brown/grey fine-grained dolostone	US-8-050.89		www.hw	138	-
- 52 - - - - 54	Dolostone - Brown/grey fine-grained dolostone 54.50	US-8-053.94		mount	134	-
	Amherstburg Formation			Ş		-
- 56 	Dolostone - Brown/grey fine-grained dolostone	US-8-056.99		Munu Munu	132	-
- - - 60 -	Dolostone - Brown and dark grey fine-grained dolostone	US-8-060.04		Mr Manson	128	-
- 62 	Dolostone - Brown/dark brown fine-grained dolostone with some dark grey fine-grained dolostone	US-8-063.09		Jummm	126	
- 64 -				Junio	122	
- - - 66 -	Dolostone - Brown/grey fine-grained dolostone	US-8-066.14		My		-

- 68 - - - - 70	Dolostone - Brown/grey fine-grained dolostone	US-8-069.19	Munnun	- - 118 - -
- - - -	Dolostone - Brown/grey fine to medium fine-grained dolostone	US-8-072.24	Marinhar	116 - - - 114 -
- 74 - - - 76 -	Dolostone - Brown/grey fine to medium fine-grained dolostone	US-8-075.29	A A A A A A A A A A A A A A A A A A A	- - 112 - - -
- - - 78 -	Dolostone - Grey fine-grained dolostone	US-8-078.34		110 - - - 108 -
- 80 - - - - 82	Dolostone - Grey fine-grained dolostone	US-8-081.39	month have the	- - 106 - -
- - 84 - -	Dolostone - Grey fine-grained dolostone	US-8-084.44	AN MANNAN A	104 - - - 102 -
- 86 - - - 88	Dolostone - Brown/dark grey fine-grained to medium fine- grained dolostone	US-8-087.49	MaryMary	- 100 - - -
- - 90 - - - 92	Dolostone - Brown/dark grey fine-grained to medium fine- grained dolostone	US-8-090.54	Many	98 - - - 96 -
- - -	Cherty Dolostone - Dark brown/grey fine-grained dolostone	US-8-093.59 Page 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 94 -

-	93.90		0/ /	Ę	_
- 94	Bois Blanc Formation			Ę	
- - - 96 - - - - - - 98	Cherty Dolostone - Dark grey/brown fine-grained dolostone	US-8-096.64		month and the man	- 92 - - - 90 -
- - - 100	Cherty Dolostone - Grey/brown fine-grained dolostone	US-8-099.69		Mary M	- 88 - - -
- 102 	Cherty Dolostone - Dark grey/dark brown more crystalline than fine-grained dolostone	US-8-102.74		MM mmm	86 - - - 84 -
- - - 106 -	Cherty Dolostone - Grey fine-grained dolostone	US-8-105.79		m for	82 -
- 108 - - - - 110	Cherty Dolostone - Grey fine-grained dolostone	US-8-108.84		month	80 - - - 78 -
- - - 112 -	Cherty Dolostone - Grey/brown medium-grained dolostone	US-8-111.89		M	- 76 - - - 74 -
- 114 - - - 116	Cherty Dolostone - Grey/brown medium-grained dolostone	US-8-114.94		m har har h	- - 72 - -
- - - 118 -	Cherty Dolostone - Light grey medium-grained dolostone	US-8-117.99		har Mr Ann	- 70 - - - 68 -

- 120 - - - - - 122	Cherty Dolostone - Light grey medium-grained with some small- grained dolostone	US-8-121.04	www.w		- - - - - - -
- - - 124 -	Cherty Dolostone - Light grey medium-grained dolostone	US-8-124.09	mmm		64 - - -
- - 126 - -	Cherty Dolostone - White/grey medium/fine-grained (high shale content) 127.20	US-8-127.14			62 - - - -
- - 128			stry		-
- - - 130 -	Dolostone - Light grey/grey medium-grained	US-8-130.19	www.www.		
- - - 132 -	Delectore		mon		56 - - -
- - 134 -	Dolostone - Light grey, medium-grained dolostone with soft shale (white)	US-8-133.24	mm		54 - - -
- - 136 -	Dolostone - Light grey/white fine-grained dolostone	US-8-136.29	My Jun		52 - - -
- - 138 -			W.M.		50 - - -
- - - 140 -	Dolostone - Dark grey medium-grained dolostone	US-8-139.34	why h	Λ	48 - - -
- - - 142 -	Dolostone - Light grey, fine-grained dolostone	US-8-142.39	N M		46 - - -
	143.26		5		44
- - 144 -	Bass Islands Formation				-
	Dolostone - Dark grey medium-grained dolostone	US-8-145.44 Page 6	فحمح		42 -

- 146			-
- - 148 - -	Dolostone - Dark grey medium/fine-grained dolostone	US-8-148.49	 40 - - - - 38 -
- 150 - - - 152	Dolostone - Light and medium grey medium/fine-grained	US-8-151.54	- - 36 - -
- - - 154	dolostone		- 34 - -
- - - 156	Dolostone - Dark grey medium-grained dolostone	US-8-154.59	- 32 - -
- - - 158 -	Dolostone - Medium grey medium-grained dolostone	US-8-157.64	
- - - 160 -	Dolostone - Dark grey with some light grey fine-grained dolostone	US-8-160.69	28 - - - 26 -
- - 162 - -	Dolostone - Medium dark grey, medium to small-grained	US-8-163.74	
- 164 - - - 166	dolostone	03-0-103.74	- - 22 - -
- 168	Dolostone - Grey/brown medium-grained dolostone with some shale	US-8-166.79	20 -
- - - 170		US-8-169.89	- 18 - -
-		Page 7	- 16 -

- 172 - - - - 174	Dolostone - Light brown medium-grained dolostone	US-8-172.89	14	-
- - - - 176	Dolostone	US-8-175.94	12	-
- - - - 178	- Grey/brown medium-grained dolostone		10	-
-	Dolostone - Dark grey with black flecks medium-grained dolostone 179.80	US-8-178.99	8	- - -
- 180 - - - 182 -	Argillaceous Dolostone - Grey/brown medium-grained dolostone with some soft blue shale	US-8-182.04	6	-
- - - 184 -	Argillaceous Dolostone - Brown/grey medium-grained dolostone with some blue shale	US-8-185.09	4	-
- - 186 -	187.30			-
- 188	Salina Formation - G Unit	US-8-188.14		-
- - - 190	Argillaceous Dolostone - Brown/grey medium-grained dolostone with some blue shale		-2	
_	191.30	US-8-191.19	_^	
- - 192 -	Dolostone - Brown dolostone with blue grey shale and			-
- - - 194 -	Dolostone - Grey/blue dolomitic shale with some brown dolostone at (~10%), - No visible anhydrite	US-8-194.24	-6	-
- - 196	196.50			
-	Salina Formation - F Unit Dolomitic Shale	US-8-197.29	-10	

- 198 - - - - 200	 Mostly blue/grey shale with <15% brown Dolomitic Shale Blue shale >85% with some minor brown dolostone 200.39 	US-8-200.39		MMANN		- -12 - -
-	Total Depth= 200.39 mBGS					- -14 - -
2 Depth (mBGS)	Stratigraphic Description	Rotary Drilling Chip Sample ID#	Stratigraphy	GAN	ІМА	Elev. (mASL)
	Veritical Exageration 1m: 100m	0#		0 CF	PS 200	
	Prepared by: MAM Checked by: SNS (27-May-08) Doc. 06-219_US8_R0			Δ		

Table D.1 - US-8 Video Log Review Notes

Zone		Borehole Wall Description
Тор	Bottom	
(mbgs)	(mbgs)	
	13.4	Bottom of surface casing
13.4	13.7	Breakout zone
14.6	14.9	Enlarged borehole
16.2	18.3	Highly broken
	20.1	Large breakout
	20.7	Breakout
21.3	21.6	Breakout
21.9	24.4	Good -smooth, unfractured
	24.7	Breakout
25.0	27.4	Very broken
	28.3	Extremely broken
	28.7	Good
29.3	30.8	Very broken
31.4	32.9	Good
33.8	34.4	Broken
34.4	35.4	Good
	35.4	Broken
35.4	37.5	Good
	40.2	Thin breakout
	42.7	Breakout
	44.5	Breakout
	45.4	Breakout
46.3	48.8	Good
	49.1	Extreme breakout
50.3	54.9	Good
56.4	64.0	Good
64.6	65.2	Broken
	68.6	Broken
68.6	71.6	Good
71.6	72.2	Broken
72.5	73.5	Broken
73.5	76.2	Good
76.5	76.8	Minor breakouts
	77.7	Minor breakouts
	78.3	Vertical fracture
78.9	81.4	Good
82.3	83.8	Horizontal fractures
85.0	86.9	Broken
88.1	91.4	Minor horizontal fractures
91.4	94.8	Good
	95.7	Broken localized
	96.9	Broken localized
	98.1	Broken localized
	98.5	Broken localized
98.5	101.5	Good
	103.6	Vertical fracture
104.2	111.9	Good

Notes:

mbgs = metres below ground surface

Zone		Borehole Wall Description
Тор	Bottom	
(mbgs)	(mbgs)	
112.2	112.8	Minor fractures
	113.7	Major breakout
114.3	117.3	Good
	118.6	Local breakout
	119.5	Local breakout
	131.1	Extreme breakout
131.4	131.7	Minor breakout
132.0	132.3	Major breakout
132.9	133.2	Breakout
135.6	137.2	Good
	137.5	Minor breakout
	139.0	Minor breakout
	140.2	Minor breakout
141.7	143.3	Good
143.3	146.3	Minor fractures
146.3	150.3	Good
	150.6	Fractures & moderate breakout
150.9	153.6	Minor breakout
153.6	155.4	Good
155.4	156.1	Minor breakout
156.4	161.5	Good
161.8	162.2	Minor voids
162.2	163.7	Minor voids
163.7	166.7	Good
	167.0	Large voids, major horizontal fracture
	167.6	Horizontal fractures
167.9	169.5	Good
169.8	170.7	Extreme breakout
	171.3	Inclined fracture, anhydrite inclusions
171.6	176.8	Good
178.3	179.5	Horizontal fractures
179.8	180.4	Minor voids
	182.3	Minor voids
	182.9	Minor breakouts
183.2	185.9	Good
186.5	186.8	Minor voids
187.1	187.8	Enlarged borehole, top of anhydrite layering
	188.1	Anyhydrite layers - poor visibility, murky
	188.4	Good - poor visibility, very murky
	189.9	Start of layering
ļ	190.2	Horizontal and vertical fractures
	191.4	Horizontal fractures
	193.5	Good
	194.5	Anhydrite infilled fracture
	195.1	Fracture
	195.7	Horizontal fracture
	196.9	Good
	197.2	Anhydrite seams
	198.7	Anhydrite layers

Table D.1 - US-8 Video Log Review Notes (cont'd)

Notes:

mbgs = metres below ground surface

